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PARTIE 1: 
Energie de déformation
 (Chapitre 9.8 + 9.10 de Gere et Goodno)



Semaine 10a

Objectifs d’apprentissage au sujet de l’énergie de 
déformation 
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• Comprendre que l’énergie de déformation est toujours positive

• Calculer l’énergie de déformation de poutre avec des charges

• Calculer Déflection sous impacte par l’énergie



Energie de déformation (strain energy)
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n Le travail fait par une force externe est stocké 
sous forme d’énergie élastique

n On peut résoudre certains problèmes liants 
force à déplacement (F-d, M-𝜃) en passant par 
l’énergie de déformation (par exemple 
déplacement du à un impact)

n C’est un pas vers une méthode de résolution 
plus complète, passant par l’énergie: le 
théorème de Castigliano. La dérivée de 
l’énergie U par rapport à la force 𝑃𝑖 donne le 
déplacement 𝑑𝑖

(Castigliano pas à l’examen!)



Energie de déformation pour une poutre en flexion pure
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Et plus généralement
U est toujours positif

𝜃 =
𝐿
𝜌
	=

𝑀𝐿
𝐸𝐼

(on le calculera dans 2 slides)

𝑤



Energie de déformation (travail) pour les poutres

n Force 𝐹!	crée un déplacement 𝛿 au point d’application:

n Moment 𝑀!, crée un angle 𝜃
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Force ou Moment ponctuels

𝑈!" =
1
2
𝐹"𝛿

𝐹"

𝑈$ =
1
2
𝑀"𝜃



Energie de déformation pour les poutres

n La densité d'énergie 𝑢0 de déformation relative est la surface 
sous la courbe e-s. On intègre sur le volume de la poutre 
pour trouver l’énergie de déformation.

n déjà vu pour des poutres en semaine 4 

n de façon générale, 𝑢0	est une forme d'énergie potentielle

n Pour une poutre (longueur selon x), on peut simplifer:
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𝑈 = '
$
𝑢" 𝑑𝑉

𝑢" =
1
2
𝜎%%𝜀%% + 𝜎&&𝜀&& + 𝜎''𝜀'' + 𝜏%&𝛾%& + 𝜏&'𝛾&' + 𝜏'%𝛾'%

𝑢" =
1
2
𝜎%%𝜀%% + 𝜏&%𝛾&% ≈

1
2
𝜎%%𝜀%% ≡

1
2
𝜎%𝜀%

n L'énergie de déformation due à la contrainte en cisaillement est plus petite d’un facteur !é"#$%%&'(
)*+,'&'(

-
que l'énergie à la contrainte normale.  

n Nous négligeons donc généralement l'énergie de contrainte due à la contrainte en cisaillement. 

𝜀



Energie de déformation pour une poutre
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n En flexion pure(𝑀"), monomatériau

U =
1
2
&
!

𝑀" 𝑥 #

𝐸𝐼",%(
# 𝑦 − 𝑦& # 𝑑𝑥	𝑑𝑦	𝑑𝑧

𝑈 =
1
2
&
&

'𝑀" 𝑥 #

𝐸𝐼",%(
𝑑𝑥 	 =

1
2
&
&

'
𝐸𝐼",%(𝑤

(( 𝑥 # 𝑑𝑥 U toujours positif

𝐼#,%" = #
&

𝑦 − 𝑦! ' 𝑑𝑦	𝑑𝑧

𝜎# 𝑥, 𝑦 = −
𝑀$ 𝑥
𝐼$,&!

𝑦 − 𝑦' 𝜀# = −
𝑦 − 𝑦'
𝜌

𝜌 =
𝐸

𝑀$ 𝑥
𝐼$,&!

𝑈 = /
4
𝑢" 𝑑𝑉 =

1
2
/
4
𝜎5𝜀5 𝑑𝑉	



Energie de déformation d’une poutre avec 
charge distribuée

n Option a) par le moment de flexion

𝑀# 𝑥 =
𝑞
2
(𝐿𝑥 − 𝑥')

𝑈 = 2
!

( 𝑀#
'

2𝐸𝐼#
	𝑑𝑥 =

𝑞'𝐿)

240	𝐸𝐼

n Option b), par la déflection

𝑤 𝑥 = − *+
',-.

(𝐿/ − 2𝐿𝑥' + 𝑥/)		(tabelle)

𝑈 = 2
!

( 𝐸𝐼
2

𝑑'𝑤
𝑑𝑥'

'

	𝑑𝑥 =
𝑞'𝐿)

240	𝐸𝐼
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Nous avons une poutre avec 2 charges, 𝐹4 and 𝐹5.	

Pouvons-nous utiliser la superposition
 𝑈676 = 𝑈8) + 𝑈8*  ?

A. Oui, la superposition s'applique

B. Non, nous ne pouvons pas utiliser 
la superposition

C. Oui, mais seulement si la 
déformation est petite
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Pour une poutre avec 2 charges, 𝐹4 and 𝐹5.	

Pouvons-nous utiliser:
 𝑈676 = 𝑈8) + 𝑈8*  ?

NON!

Nous ne pouvons pas utiliser le principe de superposition pour l’énergie, 
car l’énergie est l’intégrale du carré du moment interne.

quand un système n’est pas linéaire : pas de superposition !

𝑈 =
1
2
4
!

"𝑀# 𝑥 $

𝐸𝐼#,&.
𝑑𝑥 	 =

1
2
4
!

"
𝐸𝐼#,&.𝑤

'' 𝑥 $ 𝑑𝑥
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Exemple: poutre soumise à une force F0 et un moment M0
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𝐹"

𝑀"

Calculons l'énergie de déformation de cette poutre de deux façons:

- méthode fausse: Calculer l'énergie associée au moment M0, puis celle due à 
la force F0, et les sommer.

- méthode juste: Calculer l'énergie du à la combinaison du moment et de la 
force



Exemple

n Moment interne dû seulement au moment 𝑀!

𝑀<" 𝑥 = −𝑀!

𝑈<" = 2
!

(𝑀# 𝑥 '

2𝐸𝐼
𝑑𝑥 =

𝑀!
'

2𝐸𝐼
𝐿

n Moment interne dû seulement à la force 𝐹!

𝑀=" 𝑥 = 𝐹! 𝑥 − 𝐿

𝑈=" = 2
!

(𝑀# 𝑥 '

2𝐸𝐼 𝑑𝑥 =
𝐹!'

6𝐸𝐼 𝐿
/
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!"

#"



Exemple
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n Moment interne du aux deux charges (F0 et M0) en même temps (OK de superposer Moments)

𝑀)*+,-*, 𝑥 = 𝐹& 𝑥 − 𝐿 − 𝑀&

𝑈>?>@A = 2
!

(𝑀# 𝑥 '

2𝐸𝐼 𝑑𝑥 =

1
2𝐸𝐼

2
!

(
𝐹! 𝑥 − 𝐿 − 𝑀!

' 𝑑𝑥 =
1
2𝐸𝐼

𝐹!'𝐿/

3
+ 𝑀!

'𝐿 + 𝐹!𝑀!𝐿'

𝑈+.+/0 = 𝑈1( + 𝑈2( +
𝐹&𝑀&

2𝐸𝐼
𝐿#

n Nous ne pouvons pas utiliser le principe de superposition pour l’énergie, car l’énergie est 
l’intégrale du carré du moment interne

!"

#"



Déformations (élastiques) produites par impact
trouver la flèche max dmax

n La flèche maximale causée par l'impact est calculée avec l’hypothèse que 
toute l'énergie potentielle de la masse qui frappe la poutre est transférée à 
la poutre (le bloc ne rebondit pas, mais se plaque à la poutre)

n donc utiliser la conservation d’énergie
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𝐸𝑛𝑒𝑟𝑔𝑖𝑒	𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑒𝑙𝑙𝑒	 = 𝑀𝑔 ℎ + 𝛿3/4



n Après impact,  la poutre se 
déforme à une flèche maximale 
dmax. Puis oscille et éventuellement 
arrive à la position statique d0
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d0 est la déflection statique du à la masse M (sans impact)



Déformations par impact

n énergie de déformation relative

n Moment de flexion du à une charge ponctuelle F0 au milieu de la poutre:
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𝑈 =
1
2
&
&

'𝑀" 𝑥 #

𝐸𝐼",%(
𝑑𝑥

𝑀' 𝑥 =

𝐹"
2
𝑥 𝑥 ≤

𝐿
2

𝐹"
2

𝐿 − 𝑥 	𝑥 >
𝐿
2

→ 𝑈2( = 2
𝐹&#

8𝐸𝐼",%(
&
&

'
#
𝑥# 𝑑𝑥 =

𝐹&#

12𝐸𝐼",%(

𝐿
2

5

F0

On verra que 𝐹! > 𝑀𝑔
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𝑈!" =
24	𝐸𝐼	
𝐿=

𝛿>?5
@

𝑈!" =
𝐹"@

12𝐸𝐼A,C"

𝐿
2

=
𝛿" =

𝑀𝑔	L=

48	𝐸𝐼

Si on pose très doucement la masse 
(déflection statique)

𝛿>?5 =
F"L=

48	𝐸𝐼

Si on laisse tomber la masse



Déflections par impact

n Conservation de l'énergie
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𝑈& = 𝑀𝑔 ℎ + 𝛿3/4 𝑈2( =
24𝐸𝐼",%(
L5 𝛿3/4#

→ 𝛿3/4 =
𝑀𝑔𝐿5

48𝐸𝐼",%(
1 + 1 + ℎ

96𝐸𝐼",%(
𝑀𝑔𝐿5

𝛿3/4 = 𝛿& 1 + 1 +
2ℎ
𝛿&

d0 est la déflection statique due à la masse M (sans impact)

𝑒𝑡	𝑑𝑜𝑛𝑐	𝐹! = 𝑀𝑔 1 + 1 +
2ℎ
𝛿!

𝑈& = 𝑈2(

𝛿E@+ 	≥ 2𝛿!
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𝛿()#
𝛿'

= 1+ 1+
2ℎ
𝛿'

h/d0

𝛿>?5/	𝛿"
si ℎ >> 𝛿0 𝛿)*% = 2ℎ𝛿"
si h=0        𝛿)*% = 2	𝛿"



Intro 1 slide au théorème de de Castigliano

Le Th. de Castigliano permet de calculer la déflection 
à partir de l’énergie de déformation.

Par exemple, poutre avec force P à l’extrémité

𝑈 =
𝑃'𝐿/

6𝐸𝐼

Et   𝛿E@+ =
F(+

/-.

On remarque que 
GH
GF
= F(+

/-.
= 𝛿E@+

La dérivé de l’énergie de déformation est la 
déflection du à cette charge
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